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ABSTRACT

INTRODUCTION

Due to ongoing climate change, mankind has embarked in a large scale decarbonization of all human activities. Since
heating and cooling of buildings is one of the main contributors to world energy consumption, with a share of almost %
(International Energy Agency ), the harnessing of low enthalpy geothermal energy to develop energy-e cient heating,
ventilation, and air conditioning (HVAC) systems is considered a key action against climate change. A geothermal HVAC
system consists in a water-to-water heat pump connected to a geothermal heat exchanger comprised of vertical boreholes.
As shown in Figure , each of these boreholes is e uipped with one or more coaxial or U-shaped probes through which a
heat carrying li uid ows to exchange heat with the ground.

e correct sizing of geothermal heat exchangers ensures the prescribed e ciency for the HVAC system is satis ed over
the whole lifetime of the building, typically years. is re uires long-term predictions of the thermal response of
the geothermal heat exchanger. Unfortunately, detailed numerical simulations of the whole problem are unfeasible for
engineering purposes (Chiasson et al. ; Lou et al. ). Hence, simpli ed theoretical models are used instead which
are accurate, exible, and fast.

All theoretical models take into account conduction of heat in the ground (Cui et al. ; Li and Lai ). For rocks and
soils of low permeability it is the dominant heat transfer mechanism so that the accuracy of predictions in such grounds is
high. However, the convective transport of heat due to groundwater ows is o en e ually relevant, especially in fractured
igneous and metamorphic rocks and in gravelly soils (Chiasson et al. ; Rico and Hermanns ). For those grounds,
only models that incorporate this second heat transfer mechanism are able to correctly forecast the thermal response of
the geothermal heat exchanger.

e goal of the present work is the mathematically rigorous derivation of a physically-sound theoretical model that
accounts for the presence of creeping groundwater ows and seamlessly integrates into the coherent theoretical framework
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Figure Sketch of a typical geothermal borehole.

pursued by the second author since (Hermanns , ). Additionally, thanks to its mathematically rigorous
derivation, the presented model also serves to critically assess the theoretical and conceptual merits and limits of the
state of the art. is discussion along with all details of the presented model can be found in Rico and Hermanns a,

b.

SCALE ANALYSIS OF THE PROBLEM

Figure shows the sketch of a typical geothermal borehole that consists in a vertical borehole of depth 𝐻 and radius 𝑟𝑏
into which several pipes are placed forming one or more coaxial or U-shaped probes. e heat carrying li uid ows with
a bulk velocity 𝑉 along these pipes to exchange heat with the surrounding ground. e space between pipes and ground
is usually lled up with grout to promote the aforementioned heat exchange and to avoid the cross-contamination of
a uifers.

ree characteristic times can be constructed out of the previous parameters, namely, the characteristic residence time
𝑡𝑟 ∼ 𝐻/𝑉 of the heat carrying li uid in the pipes, the characteristic transversal di usion time 𝑡𝑏 ∼ 𝑟2

𝑏/𝛼𝑔, where 𝛼𝑔 is the
e ective thermal di usivity of the ground, and the characteristic longitudinal di usion time 𝑡𝐻 ∼ 𝐻2/𝛼𝑔 . Computing
these characteristic times using real-world values for 𝐻, 𝑟𝑏, 𝑉 , and 𝛼𝑔 reveals that 𝑡𝑟 is of order minutes, 𝑡𝑏 is of order
hours, and 𝑡𝐻 is of order centuries (Hermanns and Pérez ).

e heat injection/extraction imposed by the HVAC system onto the geothermal heat exchanger introduces a fourth
characteristic time, namely, 𝑡𝑞 . Since the heating and cooling needs of a building vary on an hourly, daily, weekly,
monthly, and yearly basis, the characteristic time 𝑡𝑞 presents a large spectrum of values that go from minutes up to
decades (Hermanns and Pérez ). e present work focuses on the most relevant operating conditions for which 𝑡𝑞 is
much larger than 𝑡𝑏 but much smaller than 𝑡𝐻 .

e aim of the present work is to incorporate the e ect of groundwater ows in the thermal response of geothermal
boreholes. Hence, a h characteristic time emerges, namely, the characteristic residence time 𝑡𝑐 ∼ 𝑟𝑏/𝑈∞ of the
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groundwater stream in the vicinity of the borehole, where𝑈∞ is the e ective seepage velocity of the groundwater ow
(Rico and Hermanns ). e ratio of 𝑡𝑐 to the characteristic transversal di usion time 𝑡𝑏 is of the order of the Peclet
number of the groundwater ow which, in the present work, is considered to be small compared to unity:

Pe =
𝑟𝑏𝑈∞

𝛼𝑔
∼

𝑡𝑏
𝑡𝑐

� 1 so that 𝑡𝑟 � 𝑡𝑏 � 𝑡𝑐 � 𝑡𝑞 � 𝑡𝐻 . ( )

is disparity in time scales will be exploited to derive approximate, albeit accurate, solutions to the thermal interaction
of geothermal boreholes with creeping groundwater ows.

Negligible axial heat transfer

e heat transfer problem in the ground can be described through independent two-dimensional problems formulated in
planes perpendicular to the borehole (Hermanns and Pérez ; Rico and Hermanns b). is is possible thanks to
two features of the problem. First, heat conduction along the borehole is negligible compared to heat conduction in the
radial direction as a conse uence of 𝑡𝑏 and 𝑡𝑞 being small compared to 𝑡𝐻 . Second, a uifers mostly ow perpendicular to
the borehole due to the small slopes of piezometric pressure levels in the ground.

FORMULATION OF THE PROBLEM

e borehole wall is impermeable so no heat convection takes place in the grout lling up the borehole. Conse uently,
heat transfer inside the borehole is solely governed by heat conduction. Nonetheless, the presence of a uifers introduces
heat convection as a second heat transfer mechanism in the ground. To address this problem the porous medium approach
is used to avoid formulating and solving the heat transfer problem in the intricate voids of the ground (Nield and
Bejan ). Additionally, local thermal e uilibrium between soil and groundwater is assumed so that a single unsteady
convection-di usion energy conservation e uation governs the thermal response of the ground (Nield and Bejan ).

e resulting governing e uations in grout and ground are

𝜕𝑇

𝜕𝑡
= 𝛼𝑏

[
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑇

𝜕𝑟

)
+

1
𝑟2

𝜕2𝑇

𝜕𝜃2

]
and

𝜕𝑇

𝜕𝑡
+ 𝑣𝑟

𝜕𝑇

𝜕𝑟
+
𝑣 𝜃
𝑟

𝜕𝑇

𝜕𝜃
= 𝛼𝑔

[
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑇

𝜕𝑟

)
+

1
𝑟2

𝜕2𝑇

𝜕𝜃2

]
, ( )

respectively. When writing these e uations, constant values for the thermal di usivity of the grout 𝛼𝑏 and for the
e ective thermal di usivity of the ground 𝛼𝑔 are assumed. is simpli cation is justi ed by the small temperature
variations expected in the problem, at most of ◦C- ◦C, which lead to negligible variations in the involved thermal
characteristics. e e ective groundwater velocity eld (𝑣𝑟 , 𝑣 𝜃 ) is obtained from solving in an exact way the uid
mechanical problem in the ground (Rico and Hermanns , b).

e solution to the formulated governing e uations must also satisfy the following continuity conditions in temperature
and normal heat ux at the borehole wall in which 𝑘𝑔 is the e ective thermal conductivity of ground and 𝑘𝑏 is the
thermal conductivity of grout:

𝑇
��
𝑟=𝑟−

𝑏
= 𝑇

��
𝑟=𝑟+

𝑏
and − 𝑘𝑏

𝜕𝑇

𝜕𝑟

����
𝑟=𝑟−

𝑏

= −𝑘𝑔
𝜕𝑇

𝜕𝑟

����
𝑟=𝑟+

𝑏

. ( )

e sought solution must also ful ll the following boundary condition at the outer surface of each pipe 𝑗 located within
the borehole:

−𝑘𝑏𝑟𝑝 𝑗
𝜕𝑇

𝜕𝑟 𝑗

����
𝑟 𝑗=𝑟𝑝 𝑗

=
𝑇𝑗 (𝑡) − 𝑇

��
𝑟 𝑗=𝑟𝑝 𝑗

𝑅𝑝 𝑗
, ( )
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where 𝑅𝑝 𝑗 represents the inner thermal resistance of pipe 𝑗 . It encompasses all heat transfer phenomena between the
heat-carrying li uid at 𝑇𝑗 (𝑡) and the outer pipe’s wall at 𝑇 |𝑟 𝑗=𝑟𝑝 𝑗 . at is, the turbulent transport of heat inside the uid
and the uasi-steady heat conduction occurring through the pipe’s wall (Hermanns and Pérez ).

e bulk temperature 𝑇𝑗 (𝑡) of the uid in pipe 𝑗 is conveniently set to ensure the prescribed heat injection rate per unit
pipe length 𝑞 𝑗 (𝑡) is satis ed at all times:

𝑇𝑗 (𝑡) =
𝑅𝑝 𝑗

2𝜋 𝑞 𝑗 (𝑡) +
1

2𝜋

∫ 𝜋

−𝜋
𝑇
��
𝑟 𝑗=𝑟𝑝 𝑗

d𝜃 𝑗 with 𝑞 𝑗 (𝑡) =
∫ 𝜋

−𝜋
−𝑘𝑏

𝜕𝑇

𝜕𝑟 𝑗

����
𝑟 𝑗=𝑟𝑝 𝑗

𝑟𝑝 𝑗 d𝜃 𝑗 . ( )

Finally, the solution to the formulated problem must tend to the unperturbed ground temperature 𝑇∞ far away from the
borehole and at the beginning of the problem:

𝑟 → ∞ : 𝑇 → 𝑇∞ and 𝑡 = 0 : 𝑇 = 𝑇∞. ( )

ASYMPTOTIC SOLUTION TO THE PROBLEM

e heat transfer problem to solve is comprised of two governing e uations, Eq. ( ), continuity conditions at the borehole
wall, Eq. ( ), boundary conditions at the pipe walls, Eqs. ( ) and ( ), and a boundary condition far from the borehole,
Eq. ( ). In the absence of an exact solution, the present work derives an approximate, albeit accurate, one using matched
asymptotic expansion techni ues (Lagerstrom ). ese techni ues exploit the presence of large disparities in time
and length scales to decompose mathematically complex problems into simpler ones. To facilitate the identi cation of
these disparities, an order of magnitude estimation of the three groups of terms comprising the governing e uation in
the ground is performed:
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(𝑟/𝑟𝑏)2

]
. ( )

Five factors a ect the order of magnitude of these three groups. First, the characteristic temperature di erence Δ𝑇
in uences all groups e ually, thus it does not a ect their relative importance. Second, the heat injection/extraction
characteristic time 𝑡𝑞 a ects the le most term which is related to the thermal inertia of the ground. ird, the residence
time of the groundwater ow near the borehole, 𝑡𝑐, impacts on the remaining two terms on the le hand side of
E uation ( ), linked to heat convection in the ground. Fourth, the characteristic transversal di usion time 𝑡𝑏 a ects
the group at the right hand side of the e uation that represents heat conduction in the ground. Although the relation
between the characteristic times 𝑡𝑏, 𝑡𝑐 , and 𝑡𝑞 has already been discussed, the relative importance of the three groups in
the governing e uation also depends on the distance to the borehole divided by the borehole radius 𝑟/𝑟𝑏 .

Close to the borehole, at radial distances comparable to the borehole radius, 𝑟/𝑟𝑏 ∼ 1, the se uence of characteristic
times dictates the relative importance of each group. ere, thermal inertia of the ground is negligible compared to heat
conduction as 𝑡𝑏 � 𝑡𝑞 . Heat conduction also dominates over the convective transport of heat in the ground since, in the
present work, the Peclet number of the groundwater ow is small compared to unity, 𝑡𝑏/𝑡𝑐 ∼ Pe � 1. Hence, this inner
region is, in rst approximation, uasi-steady and solely governed by heat conduction.

Further away from the borehole, however, the described balance of terms changes giving rise to a second region. So, at
distances from the borehole of order 𝑟/𝑟𝑏 ∼

√
𝑡𝑞/𝑡𝑏 � 1, thermal inertia and heat conduction become e ually important

in the governing e uation. e relative importance of heat convection in the outer region relies on the Peclet number. e
present work focuses on the most interesting case in which all three phenomena (thermal inertia, heat convection, and
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heat conduction) are important in the outer region for which Pe ∼
√
𝑡𝑞/𝑡𝑏 � 1. Hence, this outer region is governed by

an unsteady convection-conduction e uation.

Matched asymptotic expansion techniques

e two-region structure described before is exploited using matched asymptotic expansion techni ues (Lagerstrom
). ese mathematical tools address the inner and outer regions separately to a erwards match their solutions at an

intermediate region in which both solutions are valid. To tackle each of the two regions, asymptotic expansion techni ues
exploit the presence of small parameters in the problem by expressing the solutions to the inner and outer regions, 𝑇in
and 𝑇out respectively, as polynomial expansions of that small parameter. In the present work, the Peclet number of the
groundwater ow acts as the small parameter so that the expansions to use are

𝑇in = 𝑇 (0)
in + Pe𝑇 (1)

in + O
(
Pe2

)
, 𝑇out = 𝑇 (0)

out + Pe𝑇 (1)
out + O

(
Pe2

)
, 𝑇𝑗 = 𝑇 (0)

𝑗 + Pe𝑇 (1)
𝑗 + O

(
Pe2

)
. ( )

Although logarithmic dependencies on the small parameter, of the form ln(Pe), do appear as well in the asymptotic
solution of the problem, these are treated as simple numbers instead and are incorporated as such into the zeroth order
solution and rst order correction to obtain (Rico and Hermanns b). Substitution of all these expansions into the
governing e uations, continuity conditions, and boundary conditions of the inner and outer regions supplies a set of
mathematical problems whose se uential solution delivers the di erent terms of the expansions.

Inner region

e inner region is composed by the grout lling up the borehole and by the ground located at distances of order 𝑟 ∼ 𝑟𝑏 .
Since 𝑡𝑏 � 𝑡𝑐 � 𝑡𝑞 , the unsteady term of the governing e uation in the grout is negligible compared to heat conduction
in both the zeroth order solution 𝑇 (0)

in and the rst order correction 𝑇 (1)
in of the inner problem.

e aforementioned se uence of characteristic times, 𝑡𝑏 � 𝑡𝑐 � 𝑡𝑞 , also implies that, in rst approximation, the ground
located in the vicinity of the borehole is governed solely by heat conduction so that 𝑇 (0)

in satis es the same e uation
in ground and grout. However, the governing e uation in the ground for 𝑇 (1)

in slightly changes. While the right hand
side of the e uation remains e ual in ground and grout, the forcing term that arises from substituting 𝑇 (0)

in into the
convective terms is now as relevant as the right hand side. Conse uently, 𝑇 (1)

in includes additional terms associated with
the particular solution of the governing e uation.

Apart from the governing e uations, the asymptotic expansions must be substituted into the boundary conditions as well.
However, the boundary condition at in nity cannot be ful lled due to the presence of the outer region. is fact leads
to the presence of undetermined integration constants in 𝑇 (0)

in and 𝑇 (1)
in that will be speci ed through an asymptotic

matching with the outer solution.

Outer region

Far from the borehole, at distances of order 𝑟 ∼ 𝑟𝑏
√
𝑡𝑞/𝑡𝑏 � 1, all three physical phenomena are relevant. Fortunately,

the velocity eld at such distances from the borehole behaves like an uniform stream so that

v𝑟
��
𝑟∼𝑟𝑏

√
𝑡𝑞/𝑡𝑏�1 = cos(𝜃) + O

(
Pe2

)
and v𝜃

��
𝑟∼𝑟𝑏

√
𝑡𝑞/𝑡𝑏�1 = − sin(𝜃) + O

(
Pe2

)
. ( )

is single simpli cation makes the partial di erential e uation in the outer region solvable. Furthermore, since the
corrections in the velocity eld are of order Pe2, the very same e uation governs both the zeroth order solution and the
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rst correction to the outer region.

is governing e uation is solved along with the boundary condition at in nity. e remaining continuity and boundary
conditions at the borehole wall and at the pipes, however, cannot be enforced due to the presence of the inner region.

e asymptotic matching with the inner solution will determine the unspeci ed integration constants to fully obtain the
solution to the outer region.

Matching of both regions

At an intermediate distance, located beyond the inner region but closer to the borehole than the outer region, both inner
and outer solutions must be asymptotically e uivalent. at is, their di erence must be smaller than the order of the
expansion: (

𝑇 (0)
in + Pe𝑇 (1)

in

) ��
𝑟�𝑟𝑏

−
(
𝑇 (0)

out + Pe𝑇 (1)
out

) ��
𝑟�𝑟𝑏

√
𝑡𝑞/𝑡𝑏

� Pe. ( )

is condition is satis ed through ade uately choosing the yet-unspeci ed integration constants from the derived inner
and outer solutions.

NUMERICAL EXAMPLES

Figure Borehole con guration for the
numerical examples.

e capabilities and limitations of the developed model are demonstrated
in this section by comparing its results against detailed numerical simula-
tions of the complete heat transfer problem using the commercial so ware
package COMSOL (Comsol Inc. ). e borehole con guration se-
lected for this example, depicted in Figure , is borrowed from Rico and
Hermanns b so that all details of the con guration can be found
there.

Figure shows the temporal evolution of the grout/ground temperature
for the time-constant values of the heat injection rates per unit pipe length
𝑞1(𝑡) = 18 W/m and 𝑞2(𝑡) = 54 W/m and for a Peclet number e ual to
. . is time evolution is depicted through three snapshots at di erent

times, namely, week at the top, weeks at the middle, and weeks at
the bottom. Inner and outer solutions are depicted using solid black lines
on the le and right plots in the gure, respectively, while the reference
solution is represented in both plots using a solid color map.

Results in the inner region show the dependence of the developed asymp-
totic model on the assumption that 𝑡𝑏 � 𝑡𝑞 . For the not-so-large value
of week, Figure shows relevant discrepancies between the inner and
reference solutions as for that time the uasi-steady region is constricted.
As time evolves, though, the uasi-steady region expands and the accuracy of the inner region enhances, practically
overlapping the reference solution for weeks, when the nal steady-state is essentially reached.

e excellent performance exhibited by the outer region in all snapshots shown in Figure is explained by its mathematical
formulation. In contrast to the inner region, in which the governing e uations are heavily simpli ed, the governing
e uation in the outer region retains all three phenomena, namely, thermal inertia, heat convection, and heat conduction.
It only di ers from the full governing e uation in terms related to the velocity eld that decay uadratically with the
distance to the borehole. Hence, far from the borehole the di erences are minimal leading to the results shown in
Figure .
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Figure (Le ) inner solution and (right) outer solution for Pe = 0.03 at di erent times. e solid color map represents
the reference solution, derived from detailed numerical simulations in COMSOL, while the black lines show
temperature isolines computed using the proposed asymptotic model.
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Another example of the good performance of the proposed model is illustrated in Figure . It shows the time evolution
of the ground temperature on a circle located at borehole radii from the borehole center. at is, at 𝑟 = 50 𝑟𝑏 . For
convenience, time evolution is expressed in months in this gure, where one month is considered 365.25/12 days. Le
and right plots represent the time evolution of ground temperature for two di erent values of the Peclet number, namely,
. and . respectively. e shown results con rm the little impact the Peclet number of the groundwater ow has

onto the accuracy of the model as deviations from the reference solution are negligible from an engineering point of
view.

However, Figure shows the strong impact of the Peclet number on the thermal in uence of the borehole. Particularly,
it reveals that the intensity of the thermal in uence grows with decreasing Peclet numbers. is is a conse uence of the
inherent ine ciency of heat conduction that leads to a build up of heat around the borehole. is build up takes place
in all spatial directions, not only downwards of the borehole, leading to the shi in temperatures observed on the le
plot.

Figure Comparison between reference solution (black) and outer solution (blue) on a circle of radius 𝑟 = 50 𝑟𝑏 for
(le ) Pe = 0.01 and (right) Pe = 0.1 at di erent times.

CONCLUSION

e present work has developed, in a mathematically rigorous way, a physically-sound model for the thermal interaction
of geothermal boreholes with creeping groundwater ows, characterized by small Peclet numbers of the groundwater
ow. Additionally, heating and cooling needs of the building are assumed to vary slowly, a simpli cation that matches

most operating conditions of real-world geothermal HVAC systems.

e performed scale analysis of the problem reveals the presence of two distinct regions whose existence is exploited
using asymptotic expansion techni ues. e resulting model for the thermal interaction of geothermal boreholes with
creeping groundwater ows exhibits great performance when compared against detailed numerical simulations.
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